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Gliding vertex on the horizontal bounding box for
multi-oriented object detection

Yongchao Xu, Mingtao Fu, Qimeng Wang, Yukang Wang, Kai Chen,
Gui-Song Xia Senior Member, IEEE , Xiang Bai Senior Member, IEEE

Abstract—Object detection has recently experienced substantial progress. Yet, the widely adopted horizontal bounding box represen-
tation is not appropriate for ubiquitous oriented objects such as objects in aerial images and scene texts. In this paper, we propose a
simple yet effective framework to detect multi-oriented objects. Instead of directly regressing the four vertices, we glide the vertex of the
horizontal bounding box on each corresponding side to accurately describe a multi-oriented object. Specifically, We regress four length
ratios characterizing the relative gliding offset on each corresponding side. This may facilitate the offset learning and avoid the confusion
issue of sequential label points for oriented objects. To further remedy the confusion issue for nearly horizontal objects, we also introduce
an obliquity factor based on area ratio between the object and its horizontal bounding box, guiding the selection of horizontal or oriented
detection for each object. We add these five extra target variables to the regression head of faster R-CNN, which requires ignorable extra
computation time. Extensive experimental results demonstrate that without bells and whistles, the proposed method achieves superior
performances on multiple multi-oriented object detection benchmarks including object detection in aerial images, scene text detection,
pedestrian detection in fisheye images.

Index Terms—Object detection, R-CNN, multi-oriented object, aerial image, scene text, pedestrian detection.
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1 INTRODUCTION

O BJECT detection has achieved a considerable progress
thanks to convolutional neural networks (CNNs). The

state-of-the-art methods [1], [2], [3] usually aim to detect
objects via regressing horizontal bounding boxes. Yet multi-
oriented objects are ubiquitous in many scenarios. Examples
are objects in aerial images and scene texts. Horizontal
bounding box does not provide accurate orientation and
scale information, which poses problem in real applications
such as object change detection in aerial images and recog-
nition of sequential characters for multi-oriented scene texts.

Recent advances in multi-oriented object detection are
mainly driven by adaption of classical object detection
methods using rotated bounding boxes [4], [5] or quad-
rangles [6], [7], [8] to represent multi-oriented objects.
Though these existing adaptions of horizontal object de-
tection methods to multi-oriented object detection have
achieved promising results, they still face some limitations.
For detection using rotated bounding boxes, the accuracy of
angle prediction is critical. A minor angle deviation leads to
important IoU drop, resulting in inaccurate object detection.
This problem is more prominent for detecting long oriented
objects such as bridges and harbors in aerial images and
Chinese text lines in scene images. The methods based on
quadrangle regression usually have ambiguity in defining
the ground-truth order of four vertices, yielding unexpected
detection results for objects of some orientations.

Some other methods [9], [10], [11] alternatively detect
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Fig. 1. Pipeline of the proposed method. An image is fed into a CNN,
which outputs a classification score (blue value), a horizontal bounding
box, four length ratios between each segment si and corresponding
side, and an obliquity factor (green value) for each detection. Based on
obliquity factor, we select horizontal box (in purple) or oriented detection
(in orange) as the final result. Best viewed in electronic version.

horizontal object parts followed by a grouping process. Yet,
such grouping process step is usually heuristic and time-
consuming. Describing an oriented object as its segmenta-
tion mask [12] is another alternative solution. However, this
often results in split and/or merged components, requiring
a heavy and time-consuming post-processing.

In this paper, we propose a simple yet effective frame-
work to deal with multi-oriented object detection. Specif-
ically, we propose to glide each vertex of the horizon-
tal bounding box on the corresponding side to accurately
describe a multi-oriented object. This results in a novel
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representation by adding four gliding offset variables to
classical horizontal bounding box representation. Put it
simply, we regress four length ratios that characterize the
relative gliding offset (see Fig. 1) on each side of horizontal
bounding box. Such representation may be less sensitive to
offset prediction error than angle prediction error in rotated
bounding box representation. By limiting the offset on the
corresponding side of horizontal bounding box, we may
facilitate offset learning and also avoid the confusion for
sequential label points in directly regressing the four ver-
tices of oriented objects. To further get rid of confusion issue
for nearly horizontal objects, we also introduce an obliquity
factor based on area ratio between the multi-oriented object
and its horizontal bounding box. As depicted in Fig. 1, this
obliquity factor guides us to select the horizontal detection
for nearly horizontal objects and oriented detection for
oriented objects. It is noteworthy that the proposed method
only introduces five additional target variables, requiring
ignorable extra computation time.

In summary, the main contribution of this paper are three
folds: 1) We introduce a simple yet effective representation
for oriented objects, which is rather robust to offset pre-
diction error and does not have the confusion issue. 2) We
propose an obliquity factor that effectively guides the selec-
tion of horizontal detection for nearly horizontal objects and
oriented detection for others, remedying the confusion issue
for nearly horizontal objects. 3) Without bells and whistles
(e.g., cascade refinement or attention mechanism), the pro-
posed method outperforms some state-of-the-art methods
on multiple multi-oriented object detection benchmarks.

2 RELATED WORK

2.1 Deep general object detection
Object detection aims to detect general objects in images
with horizontal bounding boxes. Recent mainstream CNN-
based methods can be roughly summarized into top-down
and bottom-up methods. Top-down methods directly detect
entire objects. They can be further categorized into two
classes: two-stage and single-stage methods. R-CNN and
its variances [1], [3], [13], [14], [15] are representative two-
stage methods. They first generate object proposals and
then use the features of these proposals to predict object
categories and refine the bounding boxes. YOLO and its
variances [2], [16], [17], SSD [18], and RetinaNet [19] are
representative single-stage methods. They predict bounding
boxes directly from deep feature maps instead of region
proposals. Bottom-up methods rise recently by predicting
object parts followed by a grouping process. CornerNet [20],
ExtremeNet [21], and CenterNet [22] are recently proposed
in succession. They attempt to predict some keypoints of
objects such as corners or extreme points, which are then
grouped into bounding boxes. Center points are also used
by [21], [22] as supplemental information for grouping.

2.2 Multi-oriented object detection
Object detection in aerial images is chanllenging because of
huge scale variations and arbitrary orientations. Extensive
studies have been devoted to this task. The baselines on
the popular dataset DOTA [23] replace horizontal box re-
gression of faster R-CNN with regression of four vertices of

quadrangle representation. Many methods resort to rotated
bounding box representation. Rotated RPN is exploited
in [24], [25], which involves more anchors and thus requires
more runtime. Ding et al. [5] propose an RoI transformer that
transforms horizontal proposals to rotated ones, on which
the rotated bounding box regression is performed. Azimi et
al. [26] adopt an image-cascade network to extract multi-
scale features. Yang et al. [27] employ multi-dimensional
attention to extract robust features, better coping with com-
plex backgrounds. Zhang et al. [28] propose to learn global
and local contexts together to enhance the features.
Oriented scene text detection is a challenging problem
due to arbitrary orientations. The mainstream CNN-based
detectors can be roughly divided into regression-based
and segmentation-based [12], [29] methods. We focus on
regression-based methods. Most methods directly predict
entire texts using rotated bounding box or quadrangle rep-
resentation. Ma et al. [30] employ rotated RPN in the frame-
work of faster R-CNN [1] to generate rotated proposals
and further perform rotated bounding box regression. Liu et
al. [31] propose to use quadrangle sliding windows to match
texts with perspective transformation. TextBoxes++ [6]
adopts vertex regression on SSD [18]. RRD [32] further
improves TextBoxes++ [6] by decoupling classification and
bounding box regression on rotation-invariant and rotation-
sensitive features, respectively, making the regression more
accurate for long texts. Both EAST [4] and Deep direct
regression [7] perform rotated bounding box regression
and/or vertex regression at each location.
Pedestrian detection in fisheye images is different from
general pedestrian detection because pedestrians in fisheye
images are often multi-oriented. Seidel et al. [33] propose to
transform omnidirectional images into perspective ones, on
which the detection is applied. Such transformation intro-
duces extra computation time. Based on the prior knowl-
edge that objects in fisheye images are radial, Tamura et
al. [34] propose to train a general object detector with rotated
images and then determine the orientations based on the
relative positions of object centers w.r.t. the image center.

2.3 Comparison with related works
Compared with the related works, the proposed method
targets on general and ubiquitous multi-oriented object de-
tection with a simple yet effective framework. By gliding the
vertex of horizontal bounding box on each corresponding
side and a novel divide-and-conquer selection scheme for
nearly horizontal and oriented objects, the proposed method
may better learn the offset for accurate multi-oriented ob-
ject detection and does not suffer from confusion issue.
Furthermore, the proposed method may be complementary
and easily plugged into many existing methods focusing
on enhancing features. To equip them with the proposed
approach, we only need to replace rotated bounding box
or vertex regression by regressing the four length ratios
and obliquity factor in addition to horizontal bounding box.
Such modification requires ignorable extra runtime.

3 PROPOSED METHOD

3.1 Overview
CNN-based object detectors perform well on detecting hor-
izontal objects but struggle on oriented ones, in particular
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Fig. 2. Illustration of proposed representation for an oriented object
O based on four intersecting points {vi} between O and its hori-
zontal bounding box Bh = (v′1, v

′
2, v
′
3, v
′
4) = (x, y, w, h). We adopt

(x, y, w, h, α1, α2, α3, α4) to represent oriented objects.

for long and dense oriented objects. Direct adaption using
rotated bounding box Br regression tends to produce in-
accurate results due to high sensitivity to angle prediction
error. Regressing the four vertices of quadrangle representa-
tion does not suffer from this problem, but also fails on some
cases because of the ambiguity in defining the order of four
ground truth vertices to be regressed. We attempt to solve
the general multi-oriented object detection by introducing
a simple representation for oriented objects and a novel
detection scheme that divides and conquers nearly horizon-
tal and oriented object detection, respectively. Specifically,
we propose to glide the vertex of horizontal bounding box
Bh on each corresponding side to accurately describe an
oriented object. Put it simply, in addition to Bh, we compute
four length ratios that characterize the relative gliding offset
on each side of Bh. Besides, We also introduce an obliquity
factor based on area ratio between multi-oriented object and
its horizontal bounding box Bh. Based on the estimated
obliquity factor, we select the horizontal (resp. oriented)
detection for a nearly horizontal (resp. oriented) object.
This simple yet effective framework only introduces five
target variables compared with classical horizontal object
detectors, requiring ignorable extra computation time.

3.2 Multi-Oriented object representation

The proposed method relies on a simple representation
for oriented objects and an effective selection scheme. An
intuitive illustration of the proposed representation is de-
picted in Fig. 2. For a given oriented object O (blue box in
Fig. 2) and its corresponding horizontal bounding box Bh
(black box in Fig. 2), let vi, i ∈ {1, 2, 3, 4} denote top, right,
bottom, left intersecting point with its horizontal bounding
box Bh denoted by v′i, i ∈ {1, 2, 3, 4}, respectively. The
horizontal bounding box Bh is also usually represented by
(x, y, w, h), where (x, y) is the center, and w and h are the
width and height, respectively. We propose to represent the
underlying oriented object by (x, y, w, h, α1, α2, α3, α4). The
extra variables αi, i ∈ {1, 2, 3, 4} are defined as follows:

α{1,3} = ‖s{1,3}‖/w,
α{2,4} = ‖s{2,4}‖/h,

(1)

where ‖si‖ = ‖vi− v′i‖ denotes the distance between vi and
v′i, i.e., the length of segment si = (vi, v

′
i) representing the

gliding offset from v′i to vi. It is noteworthy that all αi is set
to 1 for horizontal objects.
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Fig. 3. Network architecture. We simply add five extra target variables
(normalized to [0, 1] using the sigmoid funciton) to the head of faster
R-CNN [1]. K: number of classes; k: a certain class.

In addition to the simple representation in terms of
(x, y, w, h, α1, α2, α3, α4) for an oriented object O, we also
introduce an obliquity factor characterizing the tilt degree
of O. This is given by the area ratio r between O and Bh:

r = |O| / |Bh|, (2)

where | · | denotes the cardinality. Nearly horizontal objects
have a large obliquity factor r being close to 1, and the obliq-
uity factor r for extremely slender and oriented objects are
close to 0. Therefore, we can select the horizontal or oriented
detection as the final result based on such obliquity factor r.
Indeed, it is reasonable to represent nearly horizontal objects
with horizontal bounding boxes. However, oriented detec-
tions are required to accurately describe oriented objects.

3.3 Network architecture

The network architecture (see Fig. 3) is almost the same as
faster R-CNN [1]. We simply add five extra target variables
(normalized to [0, 1] using the sigmoid funciton) to the head
of faster R-CNN [1]. Specifically, The input image is first
fed into a backbone network to extract deep features and
generate bounding box proposals with RPN [1]. Then the
regional features extracted via RoIAlign [35] on proposals
are passed through a modified R-CNN head to generate fi-
nal results, including a horizontal bounding box (x, y, w, h),
four variables (α1, α2, α3, α4) characterizing the oriented
bounding box, and obliquity factor r that indicates whether
the object is nearly horizontal or not.

3.4 Ground-truth generation

The ground-truth for each object is composed of three com-
ponents: classical horizontal bounding box representation
(x̃, ỹ, w̃, h̃), four extra variables (α̃1, α̃2, α̃3, α̃4) representing
the oriented object, and the obliquity factor r̃. The horizon-
tal bounding box ground-truth follows the pioneer work
in [13], which is relative to the proposal. The ground-truth
for the four extra variables (α̃1, α̃2, α̃3, α̃4) and obliquity
factor r̃ depend only on the underlying ground-truth object,
and are directly calculated by Eq. (1) and (2), respectively.

3.5 Training objective

The proposed method involves loss for RPN stage and R-
CNN stage. The loss of RPN is the same as that in [1]. The
loss L for R-CNN head contains a classification loss term
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Lcls and a regression loss term Lreg . The R-CNN loss L is
given by

L =
1

Ncls

∑
i

Lcls +
1

Nreg

∑
i

p∗i × Lreg, (3)

where Ncls and Nreg are the number of total proposals
and positive proposals in a mini-batch fed into the head,
respectively, and i denotes the index of a proposal in a mini-
batch. If the i-th proposal is positive, p∗i is 1, otherwise
it is 0. The regression loss Lreg contains three terms for
horizontal bounding box, four length ratios (α1, α2, α3, α4),
and obliquity factor r regression, respectively. Put it simply,
the regression loss Lreg is given by

Lreg = λ1 × Lh + λ2 × Lα + λ3 × Lr,

Lα =
4∑
i=1

smoothL1(αi − α̃i),

Lr = smoothL1(r − r̃),

(4)

where Lh is the loss for horizontal box regression, which
is the same as that in [1], and λ1, λ2, and λ3 are hyper-
parameters that balance the importance of each loss term.

3.6 Inference
During testing phase, for a given image, the forward pass
generates a set of (x, y, w, h, α1, α2, α3, α4, r) representing
horizontal bounding boxes, four length ratios, and obliquity
factors. For each candidate, if its obliquity factor r is larger
than a threshold tr , indicating that the underlying object
is nearly horizontal, we select the horizontal bounding box
(x, y, w, h) as the final detection. Otherwise, we select the
oriented one given by (x, y, w, h, α1, α2, α3, α4). The non-
maximum suppression (NMS) process is also performed.
Specifically, we first adopt the efficient horizontal NMS
(with 0.5 IoU threshold) to get rid of some candidate propos-
als, followed by an oriented NMS (with 0.1 IoU threshold)
on the significantly reduced number of candidate proposals.

4 EXPERIMENTS

4.1 Datasets and evaluation protocols
DOTA [23] is a large-scale and challenging dataset for object
detection in aerial images with quadrangle annotations. It
contains 2806 4000× 4000 images and 188, 282 instances of
15 object categories: plane, baseball diamond (BD), bridge,
ground field track (GTF), small vehicle (SV), large vehicle
(LV), ship, tennis court (TC), basketball court (BC), storage
tank (ST), soccer-ball field (SBF), roundabout (RA), harbor,
swimming pool (SP) and helicopter (HC). The official eval-
uation protocol of DOTA in terms of mAP is used.
HRSC2016 [36] is dedicated for ship detection in aerial
images, containing 1061 images annotated with rotated rect-
angles. We conduct experiments for the level-1 task which
detects ship from backgrounds. The standard evaluation
protocol of HRSC2016 in terms of mAP is used.
MSRA-TD500 [37] is proposed for detecting long and ori-
ented texts. It contains 300 training and 200 test images
annotated in terms of text lines. Since the training set is
rather small, following other methods, we also use HUST-
TR400 [38] during training. The standard evaluation proto-
col of MSRA-TD500 based on F-measure is used.

RCTW-17 [39] is also a long text detection dataset, consist-
ing of 8034 training images and 4229 test images annotated
with text lines. This dataset is very challenging due to very
large text scale variances. We evaluate the proposed method
via the online evaluation platform in terms of F-measure.

MW-18Mar [40] is a multi-target horizontal pedestrian
tracking dataset, in which images are taken with fisheye
cameras. The authors of [34] extracted some frames and
annotated the pedestrians with rotated rectangles for omni-
directional pedestrian detection. The standard miss rates at
every false positive per image (FPPI) and log average miss
rates (LAMRs) [41] are adopted for benchmarking.

4.2 Implementation Details
The proposed method is implemented based on the project
of “maskrcnn benchmark” 1 using 3 Titan Xp GPUs.
For a fair comparison with other methods, we adopt
ResNet101 [42] for object detection in aerial images, where
the batch size is set to 6 due to limited GPU memory. For
the other experiments, ResNet50 is adopted, and the batch
size is set to 12. In all experiments, the network is trained by
SGD optimizer with momentum and weight decay set to 0.9
and 5 × 10−4, respectively. The learning rate is initialized
with 7.5 × 10−3 and divided by 10 at each learning rate
decay step. The hyper-parameters λ1, λ2, and λ3 in Eq. (4)
are set to 1, 1, and 16, respectively. Without explicitly spec-
ifying, the hyper-parameter tr on obliquity factor guiding
the selection of horizontal or oriented detection is set to 0.8.
Some other application related settings are depicted in the
corresponding sections.

We compare the proposed method with two baseline
methods using rotated bounding box representation (de-
noted by RBox Reg.) and quadrangle representation (de-
noted by Vertex Reg.). For the RBox reg., based on horizontal
prior boxes, similar with [5], [24], [30], we regress the object
center (x, y), long and short side length (w′, h′), and the an-
gle θ between the long side and X-axis. For Vertex Reg., we
follow [6] by regressing the one-to-one vertex offset between
each vertex of the prior box and its corresponding ground-
truth vertex, which is ordered by minimizing the sum of
vertex-wise Euclidean distances between the ground-truth
oriented object and its horizontal bounding box. For a fair
comparison, both baseline methods are implemented using
similar settings with the proposed method.

4.3 Object detection in aerial images
For the experiments on DOTA [23], we train the model
for 50k steps, and the learning rate decays at {38k, 46k}
steps. Random rotation with angle among {0, π/2, π, 3π/2}
and class balancing are adopted for data augmentation. For
the experiments on HRSC2016 [36], we train the model
for 3.2k steps and decay the learning rate at 2.8k steps.
Horizontal flipping is applied for data augmentation. For
a fair comparison, the size of training/test images and the
anchor settings on both datasets are kept the same as [5].

Overall results. Some qualitative results on DOTA and
HRSC2016 are shown in Fig. 4 and Fig. 7(a), respectively.
We show all detected objects with classification scores above

1. https://github.com/facebookresearch/maskrcnn-benchmark
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Fig. 4. Some detection results of the proposed method on DOTA [23]. The arbitrary-oriented objects are correctly detected.

TABLE 1
Quantitative comparison with other methods on DOTA. Ours-r means that the divide and conquer detection scheme based on obliquity factor r is

not used. ∗ indicates that the backbone network is light-head R-CNN [43]. † stands for evaluation using IoU threshold 0.7. Note that the runtime for
oriented NMS is not included for all methods on this dataset. Otherwise, the proposed method using FPN runs at 9.4 FPS instead of 10.0 FPS.

Methods FPN Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC mAP FPS
FR-O [23] - 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13 -

RoI Trans.∗ [5] - 88.53 77.91 37.63 74.08 66.53 62.97 66.57 90.50 79.46 76.75 59.04 56.73 62.54 61.29 55.56 67.74 5.9
Ours∗ - 89.95 86.37 45.79 73.44 71.44 68.20 75.96 90.72 79.63 85.03 58.56 70.19 68.28 71.34 54.45 72.49 8.4
Ours-r - 89.93 85.78 45.90 73.66 70.07 69.10 76.78 90.62 79.08 83.94 57.75 67.57 67.53 70.85 56.46 72.33 9.8
Ours - 89.89 85.99 46.09 78.48 70.32 69.44 76.93 90.71 79.36 83.80 57.79 68.35 72.90 71.03 59.78 73.39 9.8

Azimi et al. [26] X 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16 -
RoI Trans.∗ [5] X 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56 -
CADNet [28] X 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90 -

R2CNN++ [27] X 89.66 81.22 45.50 75.10 68.27 60.17 66.83 90.90 80.69 86.15 64.05 63.48 65.34 68.01 62.05 71.16 -
RBox reg. X 89.37 75.96 35.43 69.57 68.35 63.78 74.92 90.76 84.70 85.26 62.43 62.40 52.97 60.32 54.61 68.72 9.2
Vertex reg. X 80.16 76.77 43.31 69.38 55.71 56.52 72.25 88.10 28.95 86.31 63.66 62.23 61.62 68.18 41.65 63.65 9.8

Ours∗ X 90.02 84.41 49.80 77.93 72.23 72.52 85.81 90.85 79.21 86.61 59.01 69.15 66.30 71.22 55.67 74.05 7.1
Ours-r X 89.40 85.08 52.00 77.40 72.68 72.89 86.41 90.74 78.80 86.79 57.84 70.42 67.73 71.64 56.63 74.43 10.0
Ours X 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02 10.0

RBox reg.† X 42.52 21.76 10.47 36.53 26.57 26.91 32.39 63.20 36.56 33.54 33.04 15.63 11.16 10.05 12.98 27.56 9.2
Vertex reg.† X 67.94 50.51 14.28 47.46 29.79 27.92 40.66 72.75 14.29 67.59 33.47 40.87 22.04 17.91 15.13 37.51 9.8

Ours∗† X 77.98 53.21 12.52 68.87 47.25 46.07 54.83 90.45 68.00 68.45 56.44 40.12 28.59 22.47 19.13 50.29 7.1
Ours-r† X 67.66 50.37 17.07 60.60 48.74 49.00 61.59 88.98 68.84 74.83 48.30 48.03 32.58 23.78 23.75 50.94 10.0
Ours† X 77.32 59.75 15.95 67.63 50.02 50.25 63.62 90.38 69.04 74.56 51.58 50.16 32.73 24.19 25.18 53.49 10.0

TABLE 2
Quantitative comparison with some state-of-the-art methods on

HRSC2016. ∗ indicates that Light-head R-CNN is adopted.

Methods RC2 [44] R2PN [25] RRD [32] RoI Trans.∗ [5] Ours∗ Ours
mAP 75.7 79.6 84.3 86.2 87.4 88.2

0.6. As illustrated, the proposed method accurately detects
both horizontal and oriented objects even under dense dis-
tribution and/or being long. The quantitative comparisons
with other methods on DOTA [23] and HRSC2016 [36] are
depicted in Tab. 1 and Tab. 2, respectively. Without any extra
network design such as cascade refinement and attention
mechanism, the proposed method outperforms some state-
of-the-art methods on both DOTA and HRSC2016 and is
more efficient in runtime. Specifically, For the experiment
on DOTA, the proposed method without FPN [3] achieves
73.39% mAP, outperforming the state-of-the-art method [5]
by 5.65% mAP. FPN [3] that exploits better multi-scale
features is also beneficial for the proposed method, boosting
the performance to 75.02%. The proposed method using

FPN [3] improves the state-of-the-art method [27] by 3.86%
mAP. For HRSC2016 dataset, the proposed method achieves
88.2% mAP, improving state-of-the-art methods by 2%.

Experiments on different network architectures. To fur-
ther demonstrate the versatility of the proposed method,
we evaluate the proposed method on different networks.
Concretely, we replace the faster R-CNN head by light-head
R-CNN [43] head. As depicted in Tab. 1, using the same
network on DOTA [23], the proposed method improves [5]
by 4.49% and 4.75% mAP with and without FPN, respec-
tively. The proposed method outperforms [5] by 1.2% mAP
on HRSC2016 [36].

Ablation study. We conduct ablation study on DOTA [23].
The proposed method relies on a novel multi-oriented object
representation composed of three components: horizontal
bounding box (x, y, w, h), gliding offsets (α1, α2, α3, α4),
and obliquity factor r. We begin with analyzing the quality
of each individual component using Faster R-CNN head
with FPN. Firstly, the proposed method achieves a good
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jects of different orientations (by rotating an input image with different
angles). The meaning of colors is the same as that in Fig. 4.

performance with 76.22% mAP under horizontal bounding
box evaluation. The small performance gap (i.e., 1.2% mAP)
between oriented and horizontal object detection implies
that the gliding offset regression is also quite accurate.
We also explicitly evaluate the accuracy of gliding offset
regression in terms of mean absolute error (MAE) for the
correctly detected objects. As depicted in Fig. 5, the gliding
offset regression is quite accurate for oriented objects, but
is less precise for nearly horizontal objects (e.g., r̃ > 0.8)
for which potential confusion issue remains. This motivates
us to regress the obliquity factor r to guide the selection
of horizontal or oriented detection as the final detection
result, helping to remedy the remaining confusion issue
for nearly horizontal objects. Indeed, as shown in Fig. 5,
the obliquity factor r regression is in general very accurate
(MAE < 5.3%). This quality analysis of each individual
component of the proposed multi-oriented object represen-
tation confirms the effectiveness of the proposed method.

Some qualitative comparison can be found in Fig. 6. We
rotate an image with several different angles and test the
proposed method and two baseline methods on the rotated
images. The RBox reg. produces inaccurate results due to the
imprecise angle regression. The Vertex reg. have difficulty
for tilted objects at some orientations due to the confusion in
defining the vertex order in training. The proposed method

TABLE 3
Ablation study on different thresholds tr of obliquity factor r.

tr 0.65 0.70 0.75 0.80 0.85 0.90 0.95
w FPN 73.29 74.30 74.72 75.02 75.06 75.06 74.44

w/o FPN 71.76 72.42 73.24 73.39 73.37 72.59 72.47

is able to accurately detect objects of any orientations.
The quantitative comparison with baseline methods is

depicted in the middle of Tab. 1. The proposed method
outperforms the two baseline methods by a large margin.
Specifically, the proposed method outperforms the RBox
reg. and Vertex reg. by 6.30% and 11.37% mAP at the cost
of ignorable runtime. In fact, as depicted in Tab. 1, the pro-
posed method is more efficient than both baseline methods
producing more false detections. To further demonstrate
the accuracy of the proposed method, we also conduct a
benchmark using larger IoU threshold 0.7 in the evaluation
system. As shown in Tab. 1, the improvement is even more
significant, changing from 6.30% (resp. 11.37%) to 25.93%
(resp. 15.98%). This further demonstrates the accuracy of the
proposed method in detecting oriented objects.

We then assess the individual contribution of the pro-
posed vertex gliding and divide-and-conquer detection
scheme in the proposed method for multi-oriented ob-
ject detection. To this end, we evaluate an alternative
of the proposed method by discarding the divide-and-
conquer detection scheme based on obliquity factor r. As
depicted in Tab. 1, the proposed representation in terms of
(x, y, w, h, α1, α2, α3, α4) contributes a lot to the improve-
ment. The proposed detection scheme brings 0.59% and
1.06% mAP improvement with and without FPN [3], respec-
tively. When larger IoU threshold 0.7 is used, the selection
scheme yields 2.55% mAP improvement, confirming the ef-
fectiveness of the selection scheme based on obliquity factor
r. Without the selection scheme, some nearly horizontal
objects with inaccurate predicted gliding offsets (see Fig. 5)
may be considered as correct (resp. incorrect) detection
under evaluation with 0.5 (resp. 0.7) IoU threshold. This
explains the more significant improvement of the selection
scheme when a larger IoU threshold is used for evaluation.

We also analyze the effect of different thresholds tr of
obliquity factor r on DOTA dataset using Faster R-CNN
head with FPN. As depicted in Tab. 3, the performance
is rather stable, especially for tr ∈ [0.75, 0.85]. The per-
formance slightly decreases for smaller and larger tr . In-
deed, with a very small threshold tr , horizontal bounding
boxes are selected to represent some oriented objects, which
leads to inaccurate detection. When a large threshold tr is
adopted, the potential confusion issue for nearly horizontal
objects remains, also resulting in decreased performance.

4.4 Long text detection in natural scenes
For oriented scene text detection on MSRA-TD500 [37] and
RCTW-17 [39], we apply the same data augmentation as
SSD [18]. Besides, we also randomly rotate the images with
π/2 to better handle vertical texts. The training images are
randomly cropped and resized to some specific sizes. For
MSRA-TD500, we randomly resize the short side of cropped
images to {512, 768, 864}. For RCTW-17 [39] containing
many small texts, the short side is randomly resized to
{960, 1200, 1400}. We first pre-train the model on Synth-
Text [45] for one epoch. Then we fine-tune the model for 4k
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(a) (b) (c) (d) (e)
Fig. 7. Some detection results of the proposed method on HRSC2016 [36] in (a), MSRA-TD500 [37] in (b-c), and RCTW-17 [39] in (d-e).

TABLE 4
Quantitative comparison with other methods on MSRA-TD500 [37]. MS

stands for multi-scale test.
Methods Precision Recall F-measure FPS

Zhang et al. [12] 83.0 67.0 74.0 0.5
SegLink [9] 86.0 70.0 77.0 8.9
RRD [32] 87.0 73.0 79.0 10.0
EAST [4] 87.3 67.4 76.1 13.2

Border MS [47] 83.0 73.3 76.8 -
TextField [29] 87.4 75.9 81.3 5.2
Lyu et al. [10] 87.6 76.2 81.5 5.7
CRAFT [48] 88.2 78.2 82.9 8.6
MCN [11] 88.0 79.0 83.0 -

Wang et al. [46] 85.2 82.1 83.6 10.0
Direct MS [7] 91.0 81.0 86.0 -

Ours 88.8 84.3 86.5 15.0

TABLE 5
Quantitative comparison with other methods on RCTW-17 [39]. MS

stands for multi-scale test.
Methods Precision Recall F-measure FPS

Official baseline [39] 76.0 40.4 52.8 8.9
RRD [32] 72.4 45.3 55.7 10.0
RRD MS 77.5 59.1 67.0 -

Direct MS [7] 76.7 57.9 66.0 -
Border MS [47] 78.2 58.8 67.1 -

LOMO [8] 80.4 50.8 62.3 4.4
LOMO MS 79.1 60.2 68.4 -

Ours 77.0 61.0 68.1 7.8
Ours MS 77.6 62.7 69.3 -

(resp. 14k) and decay the learning rate at 3k (resp. 10k) steps
for MSRA-TD500 (resp. RCTW-17). During test, the short
side of MSRA-TD500 images is resized to 768. For RCTW-
17, the short side is set to 1200 for single scale test. We add
extra scales of {512, 1024, 1280, 1560} for multi-scale test.

Some qualitative illustrations are given in Fig. 7(b-e). The
proposed method correctly detect texts of arbitrary orienta-
tions. The quantitative comparisons with some state-of-the-
art methods on MSRA-TD500 and RCTW-17 are depicted in
Tab. 4 and Tab. 5, respectively. The proposed method out-
performs other competing methods and is more efficient on
both datasets. Specifically, on MSRA-TD500, the proposed
method under single scale test outperforms the multi-scale
version of [7] using larger extra training images by 0.5%, and
improves [46] by 2.9%. On RCTW-17, the proposed method
outperforms the state-of-the-art method [8] by 5.8% (resp.
0.9%) under single-scale (resp. multi-scale) test while being
much more efficient.

4.5 Pedestrian detection in fisheye images
We compare the proposed method with the two baseline
methods RBox reg. and Vertex reg., classical horizontal box

(a) HBox reg. (b) RBox reg. (c) Vertex reg. (d) Ours
Fig. 8. Qualitative illustrations of different methods on MW-18Mar [40].
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Fig. 9. Evaluation on MW-18Mar [40]. The numbers are the LAMRs.

regression (denoted by HBox reg.), and the method in [34]
on MW-18Mar [40]. For a fair comparison with [34], we fol-
low similar training and test settings with [34]. Specifically,
in all experiments, FPN is not used. All images are resized
to 416 × 416 during training and test. During training, We
randomly rotate the images for data augmentation. The
model is trained in total for 4k steps and the learning rate
decays at 3k steps.

Some qualitative results are illustrated in Fig. 8. The
proposed method achieves more accurate results than all the
baseline methods. The curve of missing rate with respect to
the number of false positives per image is depicted in Fig. 9.
The proposed method achieves lower missing rate than all
the other methods.

5 CONCLUSION

In this paper, we propose a simple yet effective representa-
tion for oriented objects and a divide-and-conquer strategy
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to detect multi-oriented objects. Based on this, we build a
robust and fast multi-oriented object detector. It accurately
detects ubiquitous multi-oriented objects such as objects
in arial images, scene texts, and pedestrians in fisheye
images. Extensive experiments demonstrate that the pro-
posed method outperforms some state-of-the-art methods
on multiple benchmarks while being more efficient. In the
future, we would like to explore the complementary of the
proposed method with other approaches focusing on feature
enhancement. One-stage multi-oriented object detector is
also another direction which is worthy of exploitation.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE
Trans. on Pattern Anal. and Mach. Intell., no. 6, pp. 1137–1149, 2017.

[2] J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-
ment,” arXiv preprint:1804.02767, 2018.

[3] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Be-
longie, “Feature pyramid networks for object detection,” in Proc.
of IEEE Conf. on Comp. Vis. and Patt. Rec., 2017, pp. 2117–2125.

[4] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“EAST: An efficient and accurate scene text detector,” in Proc. of
IEEE Conf. on Comp. Vis. and Patt. Rec., 2017, pp. 2642–2651.

[5] J. Ding, N. Xue, Y. Long, G.-S. Xia, and Q. Lu, “Learning roi
transformer for oriented object detection in aerial images,” in Proc.
of IEEE Conf. on Comp. Vis. and Patt. Rec., 2019, pp. 2849–2858.

[6] M. Liao, B. Shi, and X. Bai, “Textboxes++: A single-shot oriented
scene text detector,” IEEE Trans. on Image Processing, vol. 27, no. 8,
pp. 3676–3690, 2018.

[7] W. He, X.-Y. Zhang, F. Yin, and C.-L. Liu, “Multi-oriented and
multi-lingual scene text detection with direct regression,” IEEE
Trans. on Image Processing, vol. 27, no. 11, pp. 5406–5419, 2018.

[8] C. Zhang, B. Liang, Z. Huang, M. En, J. Han, E. Ding, and X. Ding,
“Look more than once: An accurate detector for text of arbitrary
shapes,” Proc. of IEEE Conf. on Comp. Vis. and Patt. Rec., pp. 10 552–
10 561, 2019.

[9] B. Shi, X. Bai, and S. Belongie, “Detecting oriented text in natural
images by linking segments,” in Proc. of IEEE Conf. on Comp. Vis.
and Patt. Rec., 2017, pp. 3482–3490.

[10] P. Lyu, C. Yao, W. Wu, S. Yan, and X. Bai, “Multi-oriented scene
text detection via corner localization and region segmentation,” in
Proc. of IEEE Conf. on Comp. Vis. and Patt. Rec., 2018, pp. 7553–7563.

[11] Z. Liu, G. Lin, S. Yang, J. Feng, W. Lin, and W. L. Goh, “Learning
markov clustering networks for scene text detection,” in Proc. of
IEEE Conf. on Comp. Vis. and Patt. Rec., 2018, pp. 6936–6944.

[12] Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai, “Multi-
oriented text detection with fully convolutional networks,” in Proc.
of IEEE Conf. on Comp. Vis. and Patt. Rec., 2016, pp. 4159–4167.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,”
in Proc. of IEEE Conf. on Comp. Vis. and Patt. Rec., 2014, pp. 580–587.

[14] R. Girshick, “Fast R-CNN,” in Proc. of IEEE Intl. Conf. on Computer
Vision, 2015, pp. 1440–1448.

[15] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-
based fully convolutional networks,” in Proc. of Advances in Neural
Information Processing Systems, 2016, pp. 379–387.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. of IEEE Conf. on
Comp. Vis. and Patt. Rec., 2016, pp. 779–788.

[17] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. of IEEE Conf. on Comp. Vis. and Patt. Rec., 2017, pp. 7263–7271.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “SSD: Single shot multibox detector,” in Proc. of
European Conference on Computer Vision, 2016, pp. 21–37.

[19] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proc. of IEEE Intl. Conf. on Computer
Vision, 2017, pp. 2980–2988.

[20] H. Law and J. Deng, “CornerNet: Detecting objects as paired
keypoints,” in Proc. of European Conf. on Comp. Vis., 2018, pp. 734–
750.

[21] X. Zhou, J. Zhuo, and P. Krahenbuhl, “Bottom-up object detection
by grouping extreme and center points,” in Proc. of IEEE Conf. on
Comp. Vis. and Patt. Rec., 2019, pp. 850–859.

[22] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet:
Object detection with keypoint triplets,” arXiv preprint:1904.08189,
2019.

[23] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu,
M. Pelillo, and L. Zhang, “DOTA: A large-scale dataset for object
detection in aerial images,” in Proc. of IEEE Conf. on Comp. Vis. and
Patt. Rec., 2018, pp. 3974–3983.

[24] L. Liu, Z. Pan, and B. Lei, “Learning a rotation invariant detector
with rotatable bounding box,” arXiv preprint:1711.09405, 2017.

[25] Z. Zhang, W. Guo, S. Zhu, and W. Yu, “Toward arbitrary-oriented
ship detection with rotated region proposal and discrimination
networks,” IEEE Geoscience and Remote Sensing Letters, no. 99, pp.
1–5, 2018.

[26] S. M. Azimi, E. Vig, R. Bahmanyar, M. Körner, and P. Reinartz,
“Towards multi-class object detection in unconstrained remote
sensing imagery,” in Proc. of Asian Conf. on Comp. Vis., 2018, pp.
150–165.

[27] X. Yang, K. Fu, H. Sun, J. Yang, Z. Guo, M. Yan, T. Zhan,
and S. Xian, “R2CNN++: Multi-dimensional attention based ro-
tation invariant detector with robust anchor strategy,” arXiv
preprint:1811.07126, 2018.

[28] G. Zhang, S. Lu, and W. Zhang, “CAD-Net: A context-aware
detection network for objects in remote sensing imagery,” arXiv
preprint:1903.00857, 2019.

[29] Y. Xu, Y. Wang, W. Zhou, Y. Wang, Z. Yang, and X. Bai, “Textfield:
Learning a deep direction field for irregular scene text detection,”
IEEE Trans. on Image Processing, 2019.

[30] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and X. Xue,
“Arbitrary-oriented scene text detection via rotation proposals,”
IEEE Trans. on Multimedia, 2018.

[31] Y. Liu and L. Jin, “Deep matching prior network: Toward tighter
multi-oriented text detection,” in Proc. of IEEE Conf. on Comp. Vis.
and Patt. Rec., 2017, pp. 3454–3461.

[32] M. Liao, Z. Zhu, B. Shi, G. Xia, and X. Bai, “Rotation-sensitive
regression for oriented scene text detection,” in Proc. of IEEE Conf.
on Comp. Vis. and Patt. Rec., 2018, pp. 5909–5918.

[33] R. Seidel, A. Apitzsch, and G. Hirtz, “Omnidetector: With neural
networks to bounding boxes.” arXiv preprint:1805.08503, 2018.

[34] M. Tamura, S. Horiguchi, and T. Murakami, “Omnidirectional
pedestrian detection by rotation invariant training,” in Proc. of
IEEE Winter Conf. on Applications of Comp. Vis., 2019, pp. 1989–1998.

[35] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proc. of IEEE Intl. Conf. on Computer Vision, 2017, pp. 2980–2988.

[36] Z. Liu, H. Wang, L. Weng, and Y. Yang, “Ship rotated bounding
box space for ship extraction from high-resolution optical satellite
images with complex backgrounds,” IEEE Geoscience and Remote
Sensing Letters, vol. 13, no. 8, pp. 1074–1078, 2016.

[37] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu, “Detecting texts of
arbitrary orientations in natural images,” in Proc. of IEEE Conf.
on Comp. Vis. and Patt. Rec., 2012, pp. 1083–1090.

[38] C. Yao, X. Bai, and W. Liu, “A unified framework for multioriented
text detection and recognition,” IEEE Trans. on Image Processing,
vol. 23, no. 11, pp. 4737–4749, 2014.

[39] B. Shi, C. Yao, M. Liao, M. Yang, P. Xu, L. Cui, S. Belongie, S. Lu,
and X. Bai, “ICDAR2017 competition on reading chinese text in the
wild (RCTW-17),” in Proc. of International Conference on Document
Analysis and Recognition, vol. 1, 2017, pp. 1429–1434.

[40] Mirror worlds challenge. [Online]. Available: https://icat.vt.edu/
mirrorworlds/challenge/index.html

[41] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” IEEE Trans. on Pattern Anal.
and Mach. Intell., vol. 34, no. 4, pp. 743–761, 2011.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. of IEEE Conf. on Comp. Vis. and Patt.
Rec., 2016, pp. 770–778.

[43] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, “Light-
Head R-CNN: In defense of two-stage object detector,” arXiv
preprint:1711.07264, 2017.

[44] Z. Liu, J. Hu, L. Weng, and Y. Yang, “Rotated region based cnn
for ship detection,” in Proc. of IEEE Intl. Conf. on Image Processing,
2017, pp. 900–904.

[45] A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text
localisation in natural images,” in Proc. of IEEE Conf. on Comp. Vis.
and Patt. Rec., 2016, pp. 2315–2324.

[46] X. Wang, Y. Jiang, Z. Luo, C.-L. Liu, H. Choi, and S. Kim,
“Arbitrary shape scene text detection with adaptive text region
representation,” in Proc. of IEEE Conf. on Comp. Vis. and Patt. Rec.,
2019, pp. 6449–6458.

[47] C. Xue, S. Lu, and F. Zhan, “Accurate scene text detection through
border semantics awareness and bootstrapping,” in Proc. of Euro-
pean Conference on Computer Vision, 2018, pp. 355–372.

[48] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region
awareness for text detection,” in Proc. of IEEE Conf. on Comp. Vis.
and Patt. Rec., 2019, pp. 9365–9374.

https://icat.vt.edu/mirrorworlds/challenge/index.html
https://icat.vt.edu/mirrorworlds/challenge/index.html

	1 Introduction
	2 Related Work
	2.1 Deep general object detection
	2.2 Multi-oriented object detection
	2.3 Comparison with related works

	3 Proposed Method
	3.1 Overview
	3.2 Multi-Oriented object representation
	3.3 Network architecture
	3.4 Ground-truth generation
	3.5 Training objective
	3.6 Inference

	4 Experiments
	4.1 Datasets and evaluation protocols
	4.2 Implementation Details
	4.3 Object detection in aerial images
	4.4 Long text detection in natural scenes
	4.5 Pedestrian detection in fisheye images

	5 Conclusion
	References

